Đề bài:
Tìm một số tự nhiên có 3 chữ số, biết rằng số đó gấp 5 lần tích các chữ số của nó
Giải:
Cách 1:
Gọi số phải tìm là abc. Theo bài ra ta có
abc = 5 x a x b x c.
Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có:
100 x a + 10 x b + 5 = 25 x a x b.
20 x a + 2 x b +1 = 5 x a x b.
Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nhưng 2 x b là số chẵn nên b = 2 hoặc 7.
- Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.
- Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1.
Thử lại: 175 = 5 x 7 x 5.
Vậy số phải tìm là 175.
Cách 2:
Tương tự cach 1 ta có:
ab5 = 25 x a x b
Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nên a, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.
mk nghĩ cách này ngắn hơn
gọi số đó là abc ( đk a khác 0)
ta có : abc = 5.a.b.c
a.100 + b.10 + c = 5.a.b.c
=> c chia hết cho 5
20a +2b +1 =5.a.b (<=> (5a- 2)(4-b) +9=0 => b>4)
2b+1 chia het cho 5 => b=2,7( 2 loại)
b=7 => a=1
vậy số đó là 175
có đúng ko
đúng thì v nhé
175 nhé bạn