Tìm min của
\(A=\frac{-3}{\sqrt{\frac{x^2}{8}-2x+17}}\)
\(B=x-\sqrt{x-2005}\)
\(C=\sqrt{x-2}+\sqrt{6-x}\)
\(D=\frac{5-3x}{\sqrt{1-x^2}}\)
1.\(\sqrt[4]{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
2. \(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\)
3. \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+2\)
4.\(3x^2-x+48=\left(3x-10\right)\sqrt{x^2+15}\)
5.\(x.\frac{3x}{\sqrt{2x-3}}-\sqrt{2x-3}=2\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
\(\sqrt{10x+1}+\sqrt{3x+5}=\sqrt{9x+4}+\sqrt{2x-2}\)
\(\sqrt{2x^2+x-1}+\sqrt{3x^2+x-1}=\sqrt{x^2+4x-3}-\sqrt{x^2-3x+4}\)
\(\frac{x^2}{\left(1+\sqrt{x+1}\right)^2}>x-4\)
Tìm Min
\(A=x+\frac{x-1}{\sqrt{x^2-2x}}\left(x>2\right)\)
\(B=x\sqrt{x}-6x+13\sqrt{x}+\frac{4}{\sqrt{x}}\)
\(C=\frac{1-4\sqrt{x}}{2x+1}-\frac{2x}{x^2+1}\)
Giải các phương trinh sau
a. \(\frac{3x+2}{\sqrt{x+2}}=2\sqrt{x+2}\) b.\(\sqrt{4x^2-1}-2\sqrt{2x+1}=0\)
c\(\sqrt{x-2}+\sqrt{4x-8}-\frac{2}{5}\sqrt{\frac{25x-50}{4}=4}\)
d. \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
e. \(\frac{2x}{\sqrt{5}-\sqrt{3}}-\frac{2x}{\sqrt{3}+1}=\sqrt{5}+1\)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
Giải phương trình vô tỉ:
a)\(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)
b)\(2\sqrt{x+3}=9x^2-x-4\)
c)\(2+3\sqrt[3]{9x^2\left(x+2\right)}=2x+3\sqrt[3]{3x\left(x+2\right)^2}\)
d)\(\sqrt{x-2+\sqrt{2x+5}}+\sqrt{x+2+3\sqrt{2x+5}}=7\sqrt{2}\)
e)\(\sqrt{4x+5}=2x^2-6x-1\)
f)\(\sqrt{5+\sqrt{x-1}}=6-x\)
g)\(x^2+2x\sqrt{x-\frac{1}{x}}=3x+1\)
Tìm ĐKXĐ giúp mik luôn nha!
1) \(\frac{\sqrt{2\left(X^2-16\right)}}{\sqrt{X-3}}+\sqrt{X-3}>\frac{7-X}{\sqrt{X-3}}\)
2) \(\frac{1}{\sqrt{2X^2+3X-5}}\ge\frac{1}{2X-1}\)
3) \(\frac{1-\sqrt{1-4X^2}}{X}< 3\)
4) \(\frac{\sqrt{3X+1}-X}{2X-1}< 1\)