a) Đặt A = \(x^2-3x+3\)
\(\Rightarrow A=x^2-3x+2,25+1,5\)
\(\Rightarrow A=\left(x-1,5\right)^2+1,5\)
Ta có: \(\left(x-1,5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1,5\right)^2+1,5\ge1,5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(x=1,5\)
Vậy \(MIN\) \(A=1,5\) \(\Leftrightarrow\) \(x=1,5\)
b) Đặt \(B=x^2+5x+5\)
\(\Rightarrow B=x^2+5x+6,25-1,25\)
\(\Rightarrow B=\left(x+2,5\right)^2-1,25\)
Ta có: \(\left(x+2,5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2,5\right)^2-1,25\ge-1,25\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-2,5\)
Vậy \(MIN\) \(B=-1,25\Leftrightarrow x=-2,5\)