\(A=\frac{x}{2}+\sqrt{1-x-x^2}=\frac{x}{2}+\sqrt{1\left(1-x-x^2\right)}\le\frac{x}{2}+\frac{1+1-x-x^2}{2}.\)
\(=\frac{x}{2}+\frac{2-x-x^2}{2}=\frac{2-x^2}{2}=1-\frac{x^2}{2}\le1-0=1\Rightarrow A_{max}=1\Leftrightarrow x=0\)
\(A=\frac{x}{2}+\sqrt{1-x-x^2}=\frac{x}{2}+\sqrt{1\left(1-x-x^2\right)}\le\frac{x}{2}+\frac{1+1-x-x^2}{2}.\)
\(=\frac{x}{2}+\frac{2-x-x^2}{2}=\frac{2-x^2}{2}=1-\frac{x^2}{2}\le1-0=1\Rightarrow A_{max}=1\Leftrightarrow x=0\)
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
1, Cho x,y: x+y=1 và x>0. Tìm Max A = x2y3
2, Cho x,y,z >0 thỏa mãn : xy+yz+zx=1. Tìm Max \(A=\frac{2x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\)
Cho \(M=\frac{2}{\sqrt{x}-1}+\frac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\frac{x-10\sqrt{x}+3}{x\sqrt{x}-1}\)
a)Tìm ĐKXĐ,rút gọn
b)tim max của M
a) tìm max của B= \(\sqrt{x+2\left(1+\sqrt{x+1}\right)}\)- \(\sqrt{x+2\left(1-\sqrt{x+1}\right)}\)
b) tìm min của y= \(\frac{x^2+x+1}{x^2+2x+2}\)
Cho biểu thức \(A=-\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
Tìm Max A
Tìm max \(A=\frac{\sqrt{x}-1}{x+\sqrt{x}+2}\)
tìm Max của biểu thức
\(P=\frac{\sqrt{x-4}}{x-2}+\frac{\sqrt{x-1}}{x+4}\)
Cho biểu thức P=\(\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
a, Tìm ĐKXĐ và rút gọn P
b, Tính giá trị của P với x=9
c,Tìm x để P=\(\frac{1}{2}\)
d,Tính giá trị nhỏ nhất của P(MIN,MAX)
e, Tìm x để P<\(\frac{1}{2}\)
g, Tìm giá trị nguyên của x để P nguyên
P=\(\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
tìm Max P