Lời giải:
PT có 2 nghiệm phân biệt $x_1,x_2$ khi:
$\Delta=25-4(m-3)>0\Leftrightarrow m< \frac{37}{4}$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=m-3\end{matrix}\right.\)
Khi đó:
$x_1^2-2x_1x_2+3x_2=1$
$\Leftrightarrow x_1^2-2x_1(5-x_1)+3(5-x_1)=1$
$\Leftrightarrow 3x_1^2-13x_1+14=0$
$\Leftrightarrow x_1=2$ hoặc $x_1=\frac{7}{3}$
$\Leftrightarrow x_2=3$ hoặc $x_2=\frac{8}{3}$ (tươg ứng)
$\Leftrightarrow m-3=x_1x_2=6$ hoặc $\frac{56}{9}$
$\Leftrightarrow m=9$ hoặc $m=\frac{83}{9}$ (đều thỏa mãn)