Cho hàm số y=f(x)=\(3\sqrt{x+1}+mx^2-2x+3\)với m là tham số.
Tìm m để \(f\left(3\right)=f\left(-1\right)\)
Tìm m để hàm số y= f(x)= \(\left(\sqrt{m^2+4}-m\right)x^2-2mx+5\)thỏa mãn điều kiện f(0)= f(1)
Cho f(x) là một hàm số thỏa mãn \(f\left(2x+3\right)=x^3+3x^2-4x+5.\)Tính \(\left(f\left(-\sqrt[3]{2013}\right)\right)\)
cho hàm số y=f(x)=\(\sqrt{x^2-6x+9}\)
a)tính f(-1), f(5)
b)tìm x để f(x)=10
c) rút gọn A=\(\dfrac{f\left(x\right)}{x^2-9}\) (x≠ -3 và x≠3)
hãy nêu tính đồng biến, nghịch biến của các hàm số bậc nhất sau:
a, y=2x-7
b, y=\(\left(1-\sqrt{2}\right)x+\sqrt{3}\)
c, y=-5x+2
d, y=\(\left(1+m^2\right)x-6\)
e, y=\(y=\left(\sqrt{3}-1\right)x+2\)
f=(2+m^2)x+1
Cho hàm số:
\(y=f\left(x\right)=\left(m^2-\sqrt{3}m-\sqrt{2}m+6\right)x+7\)
Với giá trị nào của m thì hàm số đồng biến , nghịch biến.
Cho hàm số y = f(x) xác định với mọi số thực x khác 0 và thỏa mãn \(f\left(x\right)+3.f\left(\frac{1}{2}\right)=x^2\). Tính f(2)
cho hàm số y=f(x)=\(\left(\sqrt{2}+1\right)x+\sqrt{3}-2\)
so sánh\(f\left(\sqrt{2}+1\right)\)và \(f\left(\sqrt{2}-1\right)\)
Cho \(f\left(x\right)=5x-1\)
a) Tính \(f\left(1\right);f\left(-2\right);f\left(\sqrt{2}\right)\)
b) So sánh \(f\left(1+\sqrt{2}\right)\) và \(f\left(1-\sqrt{2}\right)\)
c) Chứng minh hàm số đồng biến trên R
d) Tìm x để f(x)=4