y ' = - 3 x 2 + 2 ( 2 m + 1 ) x - m 2 + 3 m - 2
Để hàm số đã cho có cực đại, cực tiểu nằm về hai phía so với trục tung khi và chỉ khi phương trình y’ = 0 có hai nghiệm x 1 , x 2 trái dấu.
Chọn A
y ' = - 3 x 2 + 2 ( 2 m + 1 ) x - m 2 + 3 m - 2
Để hàm số đã cho có cực đại, cực tiểu nằm về hai phía so với trục tung khi và chỉ khi phương trình y’ = 0 có hai nghiệm x 1 , x 2 trái dấu.
Chọn A
Cho hàm số y = x 4 2 - 2 m 2 x 2 + 2 . Tìm tập hợp tất cả các giá trị của tham số thực m sao cho đồ thị của hàm số đã cho có cực đại và cực tiểu, đồng thời đường thẳng cùng phương với trục hoành qua điểm cực đại tạo với đồ thị một hình phẳng có diện tích bằng 64 15 là
Tìm tất cả giá trị của m để hàm số y = 1/3.x3 – mx2 + (m2 – m + 1)x + 1 đạt cực đại tại x = 1
A. m = -2
B. m = -1
C. m = 2.
D. m = 1
Tìm m để đồ thị hàm số y = x 4 - 2 m 2 x 2 + 1 có ba cực trị tạo thành tam giác vuông
A. m = ± 1
B. m = ± 2
C. m = 3
D. Đáp án khác
Tìm m để đồ thị hàm số y = x 4 - 2 m 2 x 2 + 1 có ba cực trị tạo thành tam giác vuông
A. m = ± 1
B. m = ± 2
C. m = 3
D. Đáp án khác
Cho hàm số f(x) có đạo hàm f'(x) = \(x\left(1-x\right)^2\left(3-x\right)^3\left(x-2\right)^4\) . Điểm cực tiểu của hàm số đã cho là
A: x = 2
B: x = 3
C: x = 0
D: x = 1
Ai có bảng biến thiên thì vẽ cho dễ hiểu
Hàm số nào sau đây không có cực trị
A: \(y=\dfrac{x^2+1}{x}\)
B: \(y=\dfrac{2x-x}{x+1}\)
C: \(y=x^2-2x+1\)
D: \(y=-x^3+x+1\)
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số có hai điểm cực trị A, B sao cho tam giác OAB có diện tích bằng 2. Hỏi S có bao nhiêu phần tử nguyên.
A. 1
B. 0
C. 2
D. 4
Tìm m để y = x 3 - 3 x 2 + m x - 1 có hai điểm cực trị tại x 1 , x 2 thỏa mãn x 1 2 + x 2 2 = 3
A. m = 3 2
B. m = 1
C. m = - 2
D. m = 1 2
Tìm m để hàm số y = x 3 - 3 m x 2 + 12 x - 2 nghịch biến trên khoảng (1; 4)
A. m ≥ 5/2
B. m ≤ 5/2
C. m ≤ 2
D. Đáp án khác