Cho hàm số y = x - 1 x + m , m ≠ - 1 , có đồ thị (C). Tìm m để đồ thị (C) nhận I (2;) làm tâm đối xứng.
A. m = 1 2
B. m = - 1 2
C. m = 2
D. m = -2
Đồ thị hàm số y = f(x) đối xứng với đồ thị của hàm số y = a x ( a > 0 , a ≠ 1 ) qua điểm I(1;1). Giá trị của biểu thức 2 + log a 1 2018 bằng
Cho hàm số y = a x 3 + b x 2 + c x + d . Biết rằng đồ thị hàm số có một điểm cực trị là M(1;-1) và nhận I(0;1) làm tâm đối xứng. Giá trị y(2) là:
A. y(2) = 2
B. y(2) = -2
C. y(2) = 6
D. y(2) = 3
Cho hàm số y = x − 1 x − 3 . Xét các mệnh đề sau:
(1) Hàm số nghịch biến trên D=R\{3}.
(2) Đồ thị hàm số có một tiệm cận đứng là x=1, tiệm cận ngang là y=3.
(3) Hàm số đã cho không có cực trị.
(4) Đồ thị hàm số nhận giao điểm I(3;1) của hai đường tiệm cận làm tâm đối xứng.
Chọn các mệnh đề đúng ?
A. 1,2,3.
B. 3,4.
C. 2,3,4.
D. 1,4.
Đồ thị của hàm số y = - 3 x + 1 x + 1 nhận điểm nào trong các điểm sau làm tâm đối xứng ?
A.K(-1;-3)
B.N(3;-1)
C.M(-1;3)
D.I(-3;-1)
Cho hàm số y = x + 1 1 - x và các mệnh đề sau
(1) Hàm số trên nhận điểm I(1;-1) làm tâm đối xứng,
(2) Hàm số trên nhận đường thẳng y = -x làm trục đối xứng.
(3) Hàm số trên nhận y = -1 là tiệm cận đứng.
(4) Hàm số trên luôn đồng biến trên R.
Trong số các mệnh đề trên, số mệnh đề sai là
A. 1
B. 2
C. 3
D. 4
Tìm tất cả các giá trị của tham số thực m để đường thẳng qua 2 điểm cực trị của đồ thị hàm số: y = x 3 - 3 m x + 2 cắt đường tròn tâm I ( 1 ; 1 ) bán kính bằng 1 tại 2 điểm A , B mà diện tích tam giác I A B lớn nhất
A. m = 1 ± 2 2
B. m = 1 ± 3 2
C. m = 1 ± 5 2
D. m = 1 ± 6 2
Tìm tọa độ tâm đối xứng của đồ thị hàm số y=(2x+1)/(x-1)
A. (1;2)
B. (2;1)
C. (1;-1)
D. (-1;1)
Đồ thị hàm số y = f(x) đối xứng với đồ thị hàm số y = log a x ( 0 < a ≠ 1 ) qua điểm I(2; 1). Giá trị của biểu thức f ( 4 - a 2019 ) bằng
A. 2023
B. -2023
C. 2017
D. -2017