Đặt \(f\left(x\right)=3x^3+ 2x^2-7x+m\)
Áp dụng định lý Bezout ta có:
\(f\left(x\right)⋮\left(3x-1\right)\Rightarrow f\left(\frac{1}{3}\right)=0\)
\(\Leftrightarrow3\left(\frac{1}{3}\right)^3+2\left(\frac{1}{3}\right)^2-7.\frac{1}{3}+m=0\)
\(\Leftrightarrow m-\frac{31}{18}=0\)
\(\Leftrightarrow m=\frac{31}{18}\)
Vậy \(m=\frac{31}{18}\)để \(f\left(x\right)⋮\left(3x-1\right)\)