+ Với x ∈ [ 1 ; 9 ] p t ↔ x 2 + 9 x ≥ 5 m
Xét f(x) = x 2 + 9 x ; f ' ( x ) = x 2 - 9 x 2
+Suy ra f ' ( x ) = 0 x ∈ ( 1 ; 9 ) ↔ x = 3
Ycbt M a x [ 1 ; 9 ] f ( x ) ≥ 5 m ↔ m ≤ 2
Chọn A.
+ Với x ∈ [ 1 ; 9 ] p t ↔ x 2 + 9 x ≥ 5 m
Xét f(x) = x 2 + 9 x ; f ' ( x ) = x 2 - 9 x 2
+Suy ra f ' ( x ) = 0 x ∈ ( 1 ; 9 ) ↔ x = 3
Ycbt M a x [ 1 ; 9 ] f ( x ) ≥ 5 m ↔ m ≤ 2
Chọn A.
Tìm tất cả các giá trị thực của tham số m sao cho mọi nghiệm của bất phương trình: x 2 - 3 x + 2 ≤ 0 cũng là nghiệm của bất phương trình m x 2 + ( m + 1 ) x + m + 1 ≥ 0 ?
A. m ≤ - 1 .
B. m ≤ - 4 7 .
C. m ≥ - 4 7 .
D. m ≥ - 1 .
Tìm tất cả các giá trị thực của tham số m sao cho mọi nghiệm của bất phương trình: x2-3x+2 ≤ 0 cũng là nghiệm của bất phương trình mx2+(m+1) x+m+1 ≥ 0
A. m ≤ - 1
B. m ≤ - 4 7
C. m ≥ - 4 7
D. m ≥ - 1
Tìm tất cả các giá trị thực của tham số m sao cho mọi nghiệm của bất phương trình: x2- 3x+ 2≤ 0 cũng là nghiệm của bất phương trình mx2+ (m+ 1) x+ m+1≥0?
A. m< -1
B. m ≤ - 4 7 .
C. m ≥ - 4 7 .
D. m> -1
Cho phương trình m + 1 log 2 2 x + 2 log 2 x + m - 2 = 0 . Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình đã cho có hai nghiệm thực x1, x2 thỏa 0 < x1 < 1 < x2
A. 2 ; + ∞
B. - 1 ; 2
C. - ∞ ; - 1
D. - ∞ ; - 1 ∪ 2 ; + ∞
Xác định giá trị của tham số m để phương trình x 3 + m x 2 + x - 5 = 0 có nghiệm dương
A. m = 5; B. m ∈ R;
C. m = -3; D. m < 0
Xác định giá trị của tham số m để phương trình x 3 + m x 2 + x - 5 = 0 có nghiệm dương
A. m = 5; B. m ∈ R;
C. m = -3; D. m < 0
Xác định giá trị của tham số m để phương trình 2 x 3 + 3m x 2 - 5 = 0 có nghiệm duy nhất.
A. m = 5 3 B. m < 5 3
C. m > 5 3 D. m ∈ R
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0
với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x ∈ ( - ∞ , 0 )
A. m > 2 + 2 3 3
B. m > 2 - 2 3 3
C. m ≥ 2 - 2 3 3
D. m ≥ - 2 - 2 3 3
Tìm tất cả các giá trị thực của tham số m để bất phương trình 1 + log 5 ( x 2 + 1 ) ≥ log 5 ( m x 2 + 4 x + m ) có nghiệm đúng ∀ x
A. m ∈ ( 2 ; 3 ]
B. m ∈ ( - 2 ; 3 ]
C. m ∈ [ 2 ; 3 )
D. m ∈ [ - 2 ; 3 )