Cho điểm A(-2; 1) và hai đường thẳng d1: 3x - 4y + 5 = 0 và d2: mx + 3y - 3 = 0. Giá trị của m để khoảng cách từ A đến d1 gấp hai lần khoảng cách từ A đến đường thẳng d2 là:
A. m = ± 1
B. m = ± 15 3
C. m = ± 4
D. m = ± 15 5
Cho điểm A(-2; 1) và hai đường thẳng d1: 3x – 4y + 2 = 0 và d2: mx + 3y – 3 = 0. Giá trị của m để khoảng cách từ A đến hai đường thẳng bằng nhau là:
A. m = ± 1
B. m = 1 và m = 4
C. m = ± 4
D. m =- 1 và m = 4
Tọa độ giao điểm của đường thẳng Δ: 4x - 3y - 26 = 0 và đường thẳng d: 3x + 4y - 7 = 0 là:
A. (5;2)
B. (2;6)
C. (2;-6)
D. (5;-2)
Trong mặt phẳng Oxy,cho hai điểm A(2;5); B(5;1) và đường thẳng (Δ):3x+4y-1=0
a)Viết phương trình đường thẳng đi qua hai điểm A,B
b)Viết phương trình đường thẳng (D) vuông góc với đường thẳng (Δ) và (D) cách điểm B một khoảng băng \(\dfrac{1}{5}\)
Viết phương trình tổng quát của đường thẳng đi qua điểm O(0;0) và song song với đường thẳng có phương trình 6x - 4y + 1 = 0
A. 4x + 6y = 0
B. 3x - 2y = 0
C. 3x - y - 1 = 0
D. 6x - 4y - 1 = 0
Cho đường thẳng Δ:3x−4y+2=0.Δ:3x−4y+2=0.
a) Viết phương trình của Δ dưới dạng tham số.
b) Viết phương trình của Δ dưới dạng phương trình theo đoạn chắn.
c) Tính khoảng cách từ mỗi điểm M(3;5),N(−4;0),P(2;1)M(3;5),N(−4;0),P(2;1) tới Δ và xét xem đường thẳng cắt cạnh nào của tam giác MNP.
d) Tính góc hợp bởi Δ và mỗi trục tọa độ.
Cho 3 đường thẳng (d1) x=1-2t y=1+t, (d2): 3x+4y-4=0, (d3): 4x-3y+2=0 . Tìm điểm M nằm trên (d1) cách đều (d2) và d3
Tính khoảng cách từ các điểm M(-2; 1) và O(0; 0) đến đường thẳng Δ có phương trình 3x – 2y - 1 = 0.
Khoảng cách từ điểm M( 2; 3) đến đường thẳng ∆: 3x- 4y+ 1= 0 là:
A. 1
B.2
C. 1/2
D. 3