\(C=\frac{x^2}{x^2-5x+7}\)
\(\Leftrightarrow Cx^2-5Cx+7C-x^2=0\)
\(\Leftrightarrow\left(C-1\right)x^2-5Cx+7C=0\)(1)
Để \(pt\left(1\right)\) có nghiệm \(\Leftrightarrow\Delta=\left(-5C\right)^2-4\left(C-1\right)7C\ge0\)
\(\Leftrightarrow25C^2-28C^2+28C\ge0\Leftrightarrow-3C^2+28C\ge0\Leftrightarrow0\le C\le\frac{28}{3}\)
Đạt GTNN là 0 khi x = 0
Đạt GTLN là \(\frac{28}{3}\) khi \(x=\frac{14}{5}\)
Mik có cách khác dễ hiểu hơn đó :v
Nhưng cám ơn bạn nhiều :))
vẽ hình hộ mình:
Cho tam giác ABC đều, dựng nửa đường tròn tâm D tiếp xúc với AB AC , lần lượt tại K L, .