Xét các số thực dương x,y,z thõa mãn điều kiện xyz=1 Tìm GTLN của biểu thức :
\(P=\frac{1}{x^3\left(y^3+z^3\right)+1}+\frac{1}{y^3\left(z^3+x^3\right)+1}+\frac{1}{z^3\left(x^3+y^3\right)+1}\)
Cho x, y, z >0 thoả mãn \(x^2+y^2+z^2=1\) . Cmr: \(\frac{x+y+z}{xy+yz+xz}\ge\sqrt{3}+\frac{1}{2\sqrt{3}}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
cho x,y> 0 thỏa mãn x+y=1. Tìm GTNN của
\(A=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
Cho x,y,z > 0 Tìm GTNN của
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2+\dfrac{12}{\left(x+y\right)\sqrt{x+y+1}}+\dfrac{12}{\left(y+z\right)\sqrt{y+z+1}}\)
Giúp với ạ !!!
giải hệ phương trình
a) \(\left\{{}\begin{matrix}\sqrt{2x^2+2y^2}+\sqrt{\frac{4}{3}\left(x^2+xy+y^2\right)}=2\left(x+y\right)\\\sqrt{3x+1}+\sqrt{5x+4}=3xy-y+3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+xy+x+3=0\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\end{matrix}\right.\)
tìm gtnn, gtln nếu có
1. \(y=x^2-\sqrt{5-x^2}\)
2. \(y=\frac{x^2-2x-2}{x-1}\)
3. \(y=2\sqrt{\left(3-2x\right)\left(x+2\right)}3+x,-2\le x\le\frac{3}{2}\)
4. \(y=\frac{x}{20}+\frac{1}{\sqrt{x-1}}\)
cho các số x,y,z thỏa mãn 0<x<y<z tìm gtnn của P=\(\frac{x^3z}{y^2\left(xz+y^2\right)}+\frac{y^4}{z^2\left(xz+y^2\right)}+\frac{z^3+15x^3}{x^2z}\)
Cho x, y, z là 3 số dương thỏa mãn xy + yz + zx = 3. Chứng minh rằng:
\(\frac{1}{1+x^2\left(y+z\right)}+\frac{1}{1+y^2\left(z+x\right)}+\frac{1}{1+z^2\left(x+y\right)}\le\frac{1}{xyz}\)
1. Tìm nghiệm nguyên: \(\left\{{}\begin{matrix}y-\left|x^2-x\right|-1\ge0\\\left|y-2\right|+\left|x+1\right|-1\le0\end{matrix}\right.\)
2. Tìm m để bpt \(\left|\dfrac{x^2-mx-1}{x^2-2x+3}\right|\le1\) có tập nghiệm bằng R
3. Tìm m để bpt \(x^2+6x\le m\left(\left|x+3\right|+1\right)\) có nghiệm.