\(M=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=t\) ,ta có :
\(\left(t+4\right)\left(t+6\right)\)
\(=t^2+4t+6t+24\)
\(=t^2+10t+24\)
\(=t^2+2.t.5+5^2-1\)
\(=\left(t+5\right)^2-1\)
Ta có :
\(\left(t+5\right)^2\ge0\) với mọi x
\(\Rightarrow\left(t+5\right)^2-1\ge-1\) với mọi x
Dấu = xảy ra khi \(\left(t+5\right)^2=0\Rightarrow t+5=0\Rightarrow t=-5\)
Vậy \(Min_M=-1\Leftrightarrow x=-5\)