Bài giải
Ta có :
\(A=\left|2004-x\right|+\left|2003-x\right|=\left|2004-x\right|+\left|x-2003\right|\ge\left|2004-x+x-2003\right|=\left|1\right|=1\)
Dấu " = " xảy ra khi :
\(\left(2004-x\right)\left(x-2003\right)\ge0\)
TH1 : \(\hept{\begin{cases}2004-x\ge0\\x-2003\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\le2004\\x\ge2003\end{cases}}\) \(\Rightarrow\text{ }2003\le x\le2004\)
TH2 : \(\hept{\begin{cases}2004-x< 0\\x-2003< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>2004\\x< 2003\end{cases}}\)( Loại )
\(\Rightarrow\text{ Min A }=1\text{ khi }2003\le x\le2004\)