\(A=x^2+y^2+xy-3x-3y+2006\)
\(4A=4x^2+4y^2+4xy-12x-12y+8024\)
\(4A=\left(4x^2+4xy+y^2\right)+3y^2-12x-12y+8024\)
\(4A=\left[\left(2x+y\right)^2-2\left(2x+y\right).3+9\right]+3\left(y^2-2y+1\right)+8012\)
\(4A=\left(2x+y-3\right)^2+3\left(y-1\right)^2+8012\)
Mà \(\left(2x+y-3\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)\(\Rightarrow3\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow4A\ge8012\)
\(\Leftrightarrow A\ge2003\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}2x+y-3=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy \(A_{Min}=2003\Leftrightarrow x=y=1\)