a)Đặt \(A=3x^2-x+1\)
\(A=3\left(x^2-2.\frac{1}{6}x+\frac{1}{36}\right)+\frac{11}{12}\)
\(A=3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\)
Vì \(3\left(x-\frac{1}{6}\right)^2\ge0\Rightarrow3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)
Dấu = xảy ra khi \(x-\frac{1}{6}=0\Rightarrow x=\frac{1}{6}\)
Vậy Min A = \(\frac{11}{12}\) khi x=1/6
b)Tương tụ