A = [(x2 - 10xy + 25y2) + 2.(x - 5y).7 + 49 ] + (y2 - 6y + 9) + 1
= [(x -5y)2 + 2.(x - 5y) + 72] + (y - 3)2 + 1 = (x - 5y + 7)2 + (y - 3)2 + 1 \(\ge\) 0 + 0 + 1 = 1
=> GTNN của A bằng 1 khi x - 5y + 7 = 0 và y - 3 = 0
=> y = 3 và x = 8
B = (x2 + xy + \(\frac{y^2}{4}\)) - 2.(x + \(\frac{y}{2}\)). \(\frac{3}{2}\) + \(\frac{9}{4}\) + \(\frac{3y^2}{4}\) - \(\frac{3y}{2}\) + \(\frac{8023}{4}\)=[ (x + \(\frac{y}{2}\))2 - 2.(x + \(\frac{y}{2}\)). \(\frac{3}{2}\) + (\(\frac{3}{2}\))2 ] + 3. (\(\frac{y}{2}\) - 2)2 + \(\frac{7975}{4}\)
= (x + \(\frac{y}{2}\) - \(\frac{3}{2}\) )2 + 3. (\(\frac{y}{2}\) - 2)2 + \(\frac{7975}{4}\) \(\ge\) 0 + 0 + \(\frac{7975}{4}\) = \(\frac{7975}{4}\)
=> GTNN của B = \(\frac{7975}{4}\) khi x + \(\frac{y}{2}\) - \(\frac{3}{2}\) = 0 và \(\frac{y}{2}\) - 2 = 0
=> y = 4 và x = -1/2