\(A=\left|2x-2014\right|+\left|x-2015\right|\)
\(A=\left|2x-2014\right|+\left|2015-x\right|\ge\left|2x-2014+2015-x\right|=\left|x+1\right|=x+1\)
\(\Rightarrow A\ge x+1\)
Dấu '' = '' xảy ra khi và chỉ khi
\(\left(2x-2014\right)\left(2015-x\right)=0\)
\(\Leftrightarrow1007\le x\le2015\)
Vậy ..............
P/s : sai thì bỏ qua nha!
ơ sao bài này ko ra MIN là số nhỉ
Ta có :
\(\left|2x-2014\right|+\left|x-2015\right|=\left|2x-2014\right|+\left|2015-x\right|\)
Áp dụng BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\), ta có :
\(A=\left|2x-2014\right|+\left|2015-x\right|\ge\left|2x-2014+2015-x\right|=\left|x+1\right|=x+1\)
Hay \(A\ge x+1\)
\(\Rightarrow MinA=x+1\Leftrightarrow\left(2x-2014\right)\left(x-2015\right)=0\)
\(\Leftrightarrow1007\le x\le2015\)
Vậy ...................