\(A=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)-13\)
\(A=\left(x-3\right)^2+\left(y+2\right)^2-13\)
Có: \(\left(x-3\right)^2;\left(y+2\right)^2\ge0\forall x;y\)
=> \(\left(x-3\right)^2+\left(y+2\right)^2-13\ge-13\)
=> \(A\ge-13\)
<=> xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
Vậy A min = -13 <=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
x2 + y2 - 6x + 4y
= ( x2 - 6x + 9 ) + ( y2 + 4y + 4 ) - 9 - 4
= ( x - 3 )2 + ( y + 2 )2 - 13
\(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2-13\ge-13\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-3=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
Vậy GTNN của biểu thức = -13, đạt được khi x = 3 và y = -2
Không chắc nha ;-;
Gọi đa thức trên là:A
Ta có:\(A=x^2+y^2-6x+4y=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)-13\)
\(=\left(x-3\right)^2+\left(y+2\right)^2-13\ge-13\)
Vậy \(MINA=-13\Leftrightarrow\hept{\begin{cases}x-3=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}}\)
A= (x\(^2\)-6x + 9 ) + ( y\(^2\)+4y + 4 ) -13
A= ( x-3 )\(^2\)+ ( y + 2)\(^2\)-13
Vi (x-3)\(^2\)+(y+2)\(^2\)\(\ge\)0 \(\forall\)x,y
\(\Rightarrow\)(x-3)\(^2\)+(y+2)\(^2\)-13 \(\ge\)-13 \(\forall\)x,y
\(\Leftrightarrow\)A \(\ge\)-13
Bài làm:
Ta có: \(x^2+y^2-6x+4y\)
\(=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)-13\)
\(=\left(x-3\right)^2+\left(y+2\right)^2-13\ge-13\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
Vậy \(Min=-13\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)