Mình nghi đề sai ; nếu đề có đúng giải như sau
Ta có : \(4P=4x^2+4y^2+4xy-4x-4y+8\)
\(=\left(4x^2+4xy+y^2\right)-\left(4x+2y\right)+1+\left(3y^2-2y+\frac{1}{3}\right)+\frac{20}{3}\)
\(=\left(2x+y\right)^2-2\left(2x+y\right)+1+3\left(y^2-\frac{2}{3}y+\frac{1}{9}\right)+\frac{20}{3}\)
\(=\left(2x+y-1\right)^2+3\left(y-\frac{1}{3}\right)^2+\frac{20}{3}\)
Ta thấy \(\left(2x+y-1\right)^2+3\left(y-\frac{1}{3}\right)^2\ge0\forall x;y\)
\(\Rightarrow4P=\left(2x+y-1\right)^2+3\left(y-\frac{1}{3}\right)^2+\frac{20}{3}\ge\frac{20}{3}\forall x;y\)
\(\Rightarrow P\ge\frac{20}{3}:4=\frac{20}{12}=\frac{5}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=\frac{1}{3}\)
Vậy \(P_{min}=\frac{5}{3}\) tại \(x=y=\frac{1}{3}\)