Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
Cho biểu thức:
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\times\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b, Biết xy=16. Tìm giá trị của x, y để A có GTNN
a, Cho x,y,z >0 thỏa điều kiện x+y+z=3. Tìm GTNN của A=\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
b, cho x >1 , y>1. Tìm GTNN của A=\(\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
Cho x,y>0. Tìm GTNN của \(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}-\sqrt{x}-\sqrt{y}\)\
Giúp mình với!!!!!!!!!!!!!!!!!!
Cho x, y, z>0 thỏa mãn x+y+z\(\ge\)3. Tìm GTNN của biểu thức
\(Q=\frac{x^3}{x+\sqrt{yz}}+\frac{y^3}{y+\sqrt{zx}}+\frac{z^3}{z+\sqrt{xy}}\)
1. Tính:
a) A= \(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)(dấu căn đầu tiên là của cả biểu thức)
b) B= \(\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{2}{\sqrt{3}}.\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
2. Cho:
A= \(\left(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right):\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)với x>0, y>0
a) Rút gọn A
b) Cho xy=16. Tìm x,y để A có GTNN. Tìm Gt đó
Cho biểu thức:
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a, Rút gọn A
b, Biết xy=6. Tìm giá trị của x,y để A có GTNN
Cho biểu thức
: \(M=\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)với x>y>0
Tìm GTNN của \(N=x^2-\frac{M}{y\left(x+y\right)}\)với x>y>0
Với x,y,z >0 và x+y+z = \(\sqrt{2}\)
Tìm GTNN của A = \(\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}.\left(\frac{\sqrt{x+y}}{z}+\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}\right)\)