Vì x^2;x^4;x^6;......;x^100 đều >= 0 => x^2+x^4+....+x^100 + 2 >= 2
=> D >= 2^2015 + 2^2015 = 2.2^2015 = 2^2016
Dấu "=" xảy ra <=> x=0
Vậy GTNN của D = 2^2016 <=> x=0
Tk mk nha
Vì x^2;x^4;x^6;......;x^100 đều >= 0 => x^2+x^4+....+x^100 + 2 >= 2
=> D >= 2^2015 + 2^2015 = 2.2^2015 = 2^2016
Dấu "=" xảy ra <=> x=0
Vậy GTNN của D = 2^2016 <=> x=0
Tk mk nha
tìm GTLN của BT :
a, D=\(2015-5\left|x-386\right|-5\left|x-389\right|\)
b, M= \(2016-\left|x-2015\right|-\left|x-1975\right|-\left|x-1945\right|\)
Tìm GTNN của \(\frac{2015}{\left(3x+1\right)^4+\left|x^2-\frac{1}{9}\right|+5}\) ?
Tìm GTNN và GTLN của biểu thức
a) |x-1|+2018
b) \(^{\left(2x-1\right)^4}\)-2015
c) 4-|3x+1|
d) \(\left(3x+2\right)^2\)+|x-1|-18
e) \(-\left(x+1\right)^5\)-|3x-2|-2019
Tìm GTNN(GTNN) của biểu thức:
\(G=\frac{\left|x\right|+3}{\left|x\right|+2}\)
\(H=\left(x-0,1\right)^{100}+\left|y-x+0,3\right|-2015\)
\(K=\left|x-1\right|+\left|x-2001\right|+5\)
Tìm GTNN của biểu thức A= \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
Tìm GTNN:
\(\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
1.Tim GTNN cua : \(\left|x+2014\right|+\left|2015-x\right|;\left(x-1\right)^2-5\)
Bài 1 : Thực hiện phép tính
(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)
(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Bài 2 : Tìm x biết
(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)
(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)
(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)
(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)
(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)
Bài 3 :
(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)
CMR : \(\frac{A}{B}\)Là 1 số nguyên
(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)
Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.
VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4
(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)
(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7
câu 1:biến đổi (x^2 + 3x + 1)^2 - 1 thành tích
câu 2: biến đổi (x^2 - 8)^2 +36 thành tích
câu 3: cho \(f\left(x\right)=\frac{100^x}{100^x+10}\)
tính tổng 2004 số hạng \(f\left(\frac{1}{2015}\right)+f\left(\frac{2}{2015}\right)+...+f\left(\frac{2014}{2015}\right)\)