Đặt \(A=x^2-4x+3\)
\(=x^2-2.x.2+4-1\)
\(=\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
Vậy MIN A=-1 \(\Leftrightarrow x=2\)
= \(x^2-4x+4-1\)
= \(\left(x-2\right)^2-1\ge-1\)
GTNN của biểu thức là -1 khi x=2
\(x^2-4x+3\)
\(=x^2-4x+4-1\)
\(=\left(x-2\right)^2-1\ge-1\)
\(\text{Dấu = xảy ra}\Leftrightarrow x-2=0\)
\(x=2\)
\(\text{Vậy GTNN của }x^2-4x+3\text{ là -1 khi x=2}\)