\(A=\frac{1}{3}+3\left|x-\frac{1}{3}\right|\)
Áp dụng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta thấy : \(\left|x-\frac{1}{3}\right|\ge0\)\(\forall\)\(x\); \(3\ge0\)
nên : \(3\left|x-\frac{1}{3}\right|\ge0\)\(\forall\)\(x\)
\(\Rightarrow\)\(\frac{1}{3}+3\left|x-\frac{1}{3}\right|\ge\frac{1}{3}+0\)\(\forall\)\(x\)
hay \(A\ge\frac{1}{3}\)\(\forall\)\(x\)
Dấu "=" xảy ra khi :
\(\Leftrightarrow\)\(\left|x-\frac{1}{3}\right|=0\)
\(\Leftrightarrow\)\(x-\frac{1}{3}=0\)
\(\Leftrightarrow\)\(x=\frac{1}{3}\)
Vậy GTNN của \(A=\frac{1}{3}\)đạt được khi \(x=\frac{1}{3}\)
A=1/3+3x[x-1/3]
=>1/3+3x[x-1/3]=0
3x[x-1/3]=1/3
x-1/3=1/3:3
x=1/9+1/3
x=4/9