N = 4x^2 - 4x + 1 - 3/2x - 1/ + 2
=> N = ( 2x - 1 )^2 - 3/2x - 1/ + 2
=> N >= 2 với mọi x
N = 2 <=> ( 2x - 1 )^2 = 0
và 3/ 2x - 1/ = 0
<=> x = 1/2
Vậy min N = 2 <=> x = 1/2.
N = 4x^2 - 4x + 1 - 3/2x - 1/ + 2
=> N = ( 2x - 1 )^2 - 3/2x - 1/ + 2
=> N >= 2 với mọi x
N = 2 <=> ( 2x - 1 )^2 = 0
và 3/ 2x - 1/ = 0
<=> x = 1/2
Vậy min N = 2 <=> x = 1/2.
Cho các số dương x,y thỏa 4x+5y=7 . Tìm GTNN của biểu thức \(B=5\left|x\right|-3\left|y\right|\)
cho biểu thức P=\(\left[\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]\):\(\dfrac{2x}{x^3+x}\)
a) Rút gọn biểu thức P
b) Với x bao nhiêu thì P đạt GTNN
a)Tìm GTLN của biểu thức:
A=\(\dfrac{3x^2-12x+20}{x-4x+5}\)
b)Tìm GTNN của biểu thức:
B=\(\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Tìm GTNN của: \(B=\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Tìm GTNN của: \(B=\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Cho biểu thức sau :
B=\(\left[\left(x^4-x+\dfrac{x-3}{x^3+1}\right).\dfrac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\dfrac{2\left(x+6\right)}{x^2+1}\right].\dfrac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\) a, Tìm giá trị của x để giá trị của biểu thức B được xác định
b, Rút gọn B
c, Cmr với các giá trị của x mà giá trị của biểu thức xác định thì \(-5\le B\le0\)
Tìm GTNN của các biểu thức sau :
A=4x^2+4xy+17y^2-8y+1
B=\(\frac{x^2-2}{x^2+2}\)
C=\(\frac{5x^2-10x+3}{\left(x-1\right)^2}\)
TÌm GTLN , GTNN của biểu thức sau : D=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
cho biểu thức P=\(\left[\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]:\dfrac{2x}{x^3+x}\)
Cho \(A=\left(\dfrac{3}{2x}-\dfrac{3x-3}{1-2x}+\dfrac{2x^2+1}{4x^2-2x}\right).\dfrac{x}{2x+1}\). CMR: Khi biểu thức A xác định thì giá trị của A ko phụ thuộc vào giá trị của x