Tìm GTLN của biểu thức: \(A=\left(\dfrac{x^2}{x^2-3x+2}+\dfrac{x^2}{x^2-5x+6}\right):\dfrac{x^4+x^2+1}{x^2-4x+3}\)
Tìm GTLN của biểu thức: \(A=\left(\dfrac{x^2}{x^2-3x+2}+\dfrac{x^2}{x^2-5x+6}\right):\dfrac{x^4+x^2+1}{x^2-4x+3}\)
cho biểu thức P=\(\left[\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]\):\(\dfrac{2x}{x^3+x}\)
a) Rút gọn biểu thức P
b) Với x bao nhiêu thì P đạt GTNN
Tìm GTLN của: A=x/(x+10)^2 \(B=\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Tìm GTNN của biểu thức :
A= x2-3x+1 B= x2+2y2-2xy+2x-10y+17
C= \(\dfrac{-3}{x^2-x+2}\) D= \(\dfrac{2x^2-16x+41}{x^2-8x+22}\) E= \(\dfrac{4x^2-6x+3}{\left(2x-1\right)^2}\)
1. Tìm GTLN, GTNN của hàm số: \(y=3\sqrt{x-1}+4\sqrt{5-x}\)
2. Tìm GTLN của biểu thức. \(A=\sqrt{\left(x-1994\right)^2}+\sqrt{\left(x+1995\right)^2}\)
3. Tìm GTNN của biểu thức: \(B=\dfrac{3}{2+\sqrt{2x-x^2+7}}\)
4. Tìm GTNN của: \(C=\dfrac{5-3x}{\sqrt{1-x^2}}\)
Cho biểu thức sau :
B=\(\left[\left(x^4-x+\dfrac{x-3}{x^3+1}\right).\dfrac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\dfrac{2\left(x+6\right)}{x^2+1}\right].\dfrac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\) a, Tìm giá trị của x để giá trị của biểu thức B được xác định
b, Rút gọn B
c, Cmr với các giá trị của x mà giá trị của biểu thức xác định thì \(-5\le B\le0\)
Cho biểu thức B=\(\left(2x+1+\dfrac{1}{2x-1}\right)\)+\(\left(\dfrac{2x^2-6x}{x-3}-\dfrac{4x^2}{2x-1}\right)\)
a)Rút gọn biểu thức B
b)Tính B với x thỏa mãn \(|x-2|\)=1
Cho \(A=\left(\dfrac{3}{2x}-\dfrac{3x-3}{1-2x}+\dfrac{2x^2+1}{4x^2-2x}\right).\dfrac{x}{2x+1}\). CMR: Khi biểu thức A xác định thì giá trị của A ko phụ thuộc vào giá trị của x