\(2x^2+12x+20=2\left(x^2+6x+10\right)=2\left(x^2+2.3x+3^2+1\right)=2\left[\left(x+3\right)^2+1\right]\)\(=2\left(x+3\right)^2+2\ge2\)
Đẳng thức xảy ra khi: \(2\left(x+3\right)^2=0\Rightarrow x+3=0\Rightarrow x=-3\)
Vậy giá trị nhỏ nhất của 2x2 + 12x + 20 là 2 khi x = -3