\(A=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
\(A=\left[\left(x-1\right)\left(x-6\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+10\)
\(A=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+10\)
Đặt \(m=x^2-7x+9\)ta có :
\(A=\left(m-3\right)\left(m+3\right)+10\)
\(A=m^2-3^2+10\)
\(A=m^2+1\)
Thay \(m=x^2-7x+9\)ta có :
\(A=\left(x^2-7x+9\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^2-7x+9=0\)