A(x) = ( x - 1 )( x - 3 )( x - 4 )( x - 6 ) + 10
= [ ( x - 1 )( x - 6 ) ][ ( x - 3 )( x - 4 ) ] + 10
= [ x2 - 7x + 6 ][ x2 - 7x + 12 ] + 10
Đặt x2 - 7x + 6 = t
<=> A(x) = t( t + 6 ) + 10
= t2 + 6t + 10
= ( t2 + 6t + 9 ) + 1
= ( t + 3 )2 + 1
\(\left(t+3\right)^2\ge0\forall t\Rightarrow\left(t+3\right)^2+1\ge1\)
Đẳng thức xảy ra <=> t + 3 = 0
<=> x2 - 7x + 6 + 3 = 0
<=> x2 - 7x + 9 = 0 (*)
\(\Delta=b^2-4ac=\left(-7\right)^2-4\cdot1\cdot9=49-36=13\)( không còn cách nào khác T^T )
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{7+\sqrt{13}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{7-\sqrt{13}}{2}\end{cases}}\)
Vậy MinA = 1 <=> \(\orbr{\begin{cases}x=\frac{7+\sqrt{13}}{2}\\x=\frac{7-\sqrt{13}}{2}\end{cases}}\)
Sai chỗ nào bỏ qua chỗ đấy nhé T^T