Ta có : \(\left(\sqrt{x-1}-1\right)^2\ge0\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+1\ge0\)
\(\Leftrightarrow x\ge2\sqrt{x-1}\)
\(\Leftrightarrow\dfrac{x}{\sqrt{x-1}}\ge2\)
Tương tự : \(\left(\sqrt{y-1}-1\right)^2\ge0\)
\(\Leftrightarrow y-1-2\sqrt{y-1}+1\ge0\)
\(\Leftrightarrow y\ge2\sqrt{y-1}\)
\(\Leftrightarrow\dfrac{y}{\sqrt{y-1}}\ge2\)
\(A=\dfrac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\dfrac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)
Theo BĐT Cô - si cho hai số không âm ta có :
\(\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\ge2\sqrt{\dfrac{x^2y^2}{\left(x-1\right)\left(y-1\right)}}=2.\dfrac{x}{\sqrt{x-1}}.\dfrac{y}{\sqrt{y-1}}\ge2.2.2=8\)
Vậy GTNN của A là 8 . Khi và chỉ khi \(x=y=2\)