x,y,z>0.Prove that:
\(\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2z^2}+1}+\dfrac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}}+\dfrac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge x+y+z+3\)
Cho \(\left\{{}\begin{matrix}x,y,z>0\\xy+yz+zx=1\end{matrix}\right.\)
Tính \(S=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)+\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)+\left(1+y^2\right)}{1+z^2}}\)
Giải hpt:
\(\left\{{}\begin{matrix}\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}=\dfrac{2}{3}\\\left(x+y\right)\left(1+\dfrac{1}{xy}\right)=6\end{matrix}\right.\)
Cho x,y>0 và xy=4.Tìm GTNN của \(Q=\dfrac{x^3}{4\left(y+2\right)}+\dfrac{y^3}{4\left(x+2\right)}\)
1. Cho 3 số dương \(x,y,z\) thoả mãn điều kiện \(xy+yz+zy=1\) . Tính:
\(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
2. Tìm Min của biểu thức:
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
3. Cho biểu thức:
\(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right).\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) với \(x>0;y>0\)
a, Rút gọn A.
b, Biết \(xy=16\) . Tìm các giá trị của x,y để A có giá trị nhỏ nhất. Tìm giá trị đó
Cho các số thực x, y, z thỏa mãn \(7\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=6\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2016\).
Tìm max: \(P=\dfrac{1}{\sqrt{3\left(2x^2+y^2\right)}}+\dfrac{1}{\sqrt{3\left(2y^2+z^2\right)}}+\dfrac{1}{\sqrt{3\left(2z^2+x^2\right)}}\)
Chứng minh bất đẳng thức
Cho x, y, z là các số dương (chứng minh hộ mình phần b) thôi)
a) CMR : \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
b) Cho x, y, z thỏa mãn : \(3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=12\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\)
CMR : \(\dfrac{1}{4x+y+z}+\dfrac{1}{x+4y+z}+\dfrac{1}{x+y+4z}\le\dfrac{1}{6}\)
Cho 3 số dương x,y,z thoả mãn điều kiện : xy+yz+zx=1. Tính:
\(A=x\sqrt{\dfrac{\left(y^2+1\right)\left(z^2+1\right)}{x^2+1}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Mn giúp e vs an, e đang cần gấp, cảm ơn mn nhiều lắm lắm
B1: Cho x;y là 2 số dương thay đổi .Tìm GTNN của \(S=\dfrac{\left(x+y\right)^2}{x^2+y^2}+\dfrac{\left(x+y\right)^2}{xy}\)
B2: Cho \(x\ge-1,y\ge1\) thỏa mãn \(\sqrt{x+1}+\sqrt{y-1}=\sqrt{2\left(x-y\right)^2+10x-6y+8}\).
Tìm GTNN của \(P=x^4+y^2-5\left(x+y\right)+2020\)
B3: Tìm GTNN của \(M=\dfrac{x+12}{\sqrt{x}+2}\)