Áp dụng schwarz , ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}=9\Rightarrow \frac{xy+yz+zx}{xyz}\geq 9\Rightarrow xy+yz+zx\geq 9xyz\)
\(\Rightarrow A\geq 9xyz-12xyz=-3xyz\)
Theo bất đẳng thức Cauchy , ta có :
\(\sqrt[3]{xyz}\leq \frac{x+y+z}{3}=\frac{1}{3}\Rightarrow xyz\leq \frac{1}{27}\Rightarrow -3xyz\geq \frac{1}{9}\)
Vậy \(Min A=-\frac{1}{9}\Leftrightarrow x=y=z=\frac{1}{3}\)