A=(x.(x-7)).((x-3)(x-4))
A=(x^2-7x)(x^2-7x+12)
dat a=x^2-7x ta co
A=a(a+12)
A=a^2+12a+36-36
A=(a+6)^2-36
=>Amin=-36
Bài làm
Ta có : A = x( x - 3 )( x - 4 )( x - 7 )
= [ x( x - 7 ) ][ ( x - 3 )( x - 4 ) ]
= ( x2 - 7x )( x2 - 7x + 12 )
Đặt t = x2 - 7x
A = t( t + 12 )
= t2 + 12t
= ( t2 + 12t + 36 ) - 36
= ( t + 6 )2 - 36
= ( x2 - 7x + 6 )2 - 36 ≥ -36 ∀ x
Dấu "=" xảy ra <=> x2 - 7x + 6 = 0
<=> x2 - 6x - x + 6 = 0
<=> x( x - 6 ) - ( x - 6 ) = 0
<=> ( x - 6 )( x - 1 ) = 0
<=> x = 6 hoặc x = 1
=> MinA = -36 <=> x = 6 hoặc x = 1