c)
\(C=4x+\frac{25}{x-1}=\left(4x-4\right)+\frac{25}{x-1}+4=4\left(x-1\right)+\frac{25}{x-1}+4\)
\(\Rightarrow C\ge2\sqrt{4\left(x-1\right).\frac{25}{x-1}}+4=20+4=24\)
Dấu "=" xảy ra khi \(4\left(x-1\right)=\frac{25}{x-1}\Leftrightarrow4\left(x-1\right)^2=25\Leftrightarrow2\left(x-1\right)=5\)( Vì \(x>1\))
\(\Leftrightarrow x=\frac{7}{2}\)
Vậy \(Min_C=24\)
a)
\(A=x^2+xy+y^2-3x-3y+2017\)
\(\Leftrightarrow A=\left(x^2+xy+\frac{y^2}{4}\right)-3x-\frac{3}{2}y+\frac{3y^2}{4}-\frac{3}{2}y+2017\)
\(\Leftrightarrow A=\left(x+\frac{y}{2}\right)^2-2.\left(x+\frac{y}{2}\right).\frac{3}{2}+\frac{9}{4}+\left(\frac{3y^2}{4}-\frac{3}{2}y+\frac{3}{4}\right)-\frac{9}{4}-\frac{3}{4}+2017\)
\(\Leftrightarrow A=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y^2}{4}-\frac{1}{2}y+\frac{1}{4}\right)+2014\)
\(\Leftrightarrow A=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y}{2}-\frac{1}{2}\right)^2+2014\)\(\ge2014\)\(\forall x,y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{y}{2}-\frac{3}{2}=0\\\frac{y}{2}-\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy \(Min_A=2014\)khi \(x=y=1\)
b)
\(B=\frac{2x^2-6x+5}{2x}\) ( \(x>0\))
\(\Leftrightarrow B=2x-3+\frac{5}{2x}\)
Áp dụng BĐT AM-GM cho 2 số dương : \(x+y\ge2\sqrt{xy}\), ta có :
\(B=\left(2x+\frac{5}{2x}\right)-3\ge2\sqrt{2x.\frac{5}{2x}}-3=2\sqrt{5}-3\)
Dấu "=" xảy ra khi \(2x=\frac{5}{2x}\Leftrightarrow x^2=\frac{5}{4}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}}{2}\\x=\frac{-\sqrt{5}}{2}\end{cases}}\)
Vậy \(Min_B=2\sqrt{5}-3\)