Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)
Tìm giá trị nhỏ nhất
C= \(\frac{2}{6x-5-9x^2}\)
Tìm giá trị lớn nhất
M = \(\frac{3}{2x^2+2x+3}\)
N = x - x2
Tìm GTLN : M=\(\frac{x^2+2x+3}{x^2+2}\)
Tìm GTNN: N=\(\frac{4x}{x^2+2}\)
Tìm GTNN của
a)\(A=\frac{3x^2-6x+17}{x^2-2x+5}\)
b)\(C=\frac{x^6+27}{x^4-3x^3+6x^2-9x+9}\)
c)\(D=\frac{x^6+512}{x^2+8}\)
tìm GTNN:
\(\frac{2}{6x-5-9x^2}\)
\(\frac{2x^2-8x+6}{x^2-2x+1}\)
Tìm GTLN/GTNN của :
A = x2 - x + 3
B = 2x2 + 10x - 2
C = 19 - 6x - 9x2
Tìm GTLN/GTNN của :
A = x2 - x + 3
B = 2x2 + 10x - 2
C = 19 - 6x - 9x2
Tìm GTLN/GTNN của :
A = x2 - x + 3
B = 2x2 + 10x - 2
C = 19 - 6x - 9x2