A = -4 - x2 + 6x = -(x2 - 6x + 9) + 5 = -(x - 3)2 + 5 \(\le\)5 \(\forall\) x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy MaxA = 5 khi x = 3
F = (x - 1)(x - 3) + 11 = x2 - 4x + 3 + 11 = (x2 - 4x + 4) + 10 = (x - 2)2 + 10 \(\ge\)10 \(\forall\)x
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MinF = 10 khi x = 2
B = 3x2 - 5x + 7 = 3(x2 - 5/3x + 25/36) + 59/12 = 3(x - 5/3)2 + 59/12 \(\ge\)59/12 \(\forall\)x
Dấu "=" xảy ra <=> x - 5/3 = 0 <=> x = 5/3
Vậy MinB = 59/12 khi x = 5/3
G = (x - 3)2 + (x - 2)2 = x2 - 6x + 9 + x2 - 4x + 4 = 2x2 - 10x + 13 = 2(x2 - 5x + 25/4) + 1/2 = 2(x - 5/2)2 + 1/2 \(\ge\)1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 5/2 = 0 <=> x = 5/2
Vậy MinG = 1/2 khi x = 5/2