Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge x-1\\\left|3-x\right|\ge3-x\end{cases}}\)
\(\Rightarrow\left|x-1\right|+\left|3-x\right|\ge x-1+3-x=2\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-1\right|=x-1\\\left|3-x\right|=3-x\end{cases}\Leftrightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}\Leftrightarrow}1\le x\le3}\)
Vậy GTNN của \(\left|x-1\right|+\left|3-x\right|=2\)\(\Leftrightarrow1\le x\le3\)