Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thị Hương

tìm GTLN của:B=x2+6x+15

Nguyễn Huy Tú
16 tháng 6 2017 lúc 15:06

Sửa đề: Tìm GTNN của \(B=x^2+6x+15\)

Giải:

Ta có: \(B=x^2+6x+15=x^2+6x+9+6\)

\(=\left(x+3\right)^2+6\)

Ta thấy \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2+6\ge6\)

Dấu " = " xảy ra khi \(\left(x+3\right)^2=0\Leftrightarrow x=-3\)

Vậy \(MIN_B=6\) khi x = -3

Đức Hiếu
16 tháng 6 2017 lúc 15:07

Tìm GTNN chứ!

\(B=x^2+6x+15\)

\(=x^2+3x+3x+9+6\)

\(=\left(x^2+3x\right)+\left(3x+9\right)+6\)

\(=x.\left(x+3\right)+3.\left(x+3\right)+6\)

\(=\left(x+3\right)^2+6\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+3\right)^2\ge0\Rightarrow\left(x+3\right)^2+6\ge6\)

Hay \(B\ge6\) với mọi giá trị của \(x\in R\).

Để \(B=6\) thì \(\left(x+3\right)^2+6=6\)

\(\Rightarrow\left(x+3\right)^2=0\Rightarrow x+3=0\)

\(\Rightarrow x=-3\)

Vậy GTNN của biểu thức B là 6 đạt được khi và chỉ khi \(x=-3\)

Chúc bạn học tốt!!!


Các câu hỏi tương tự
SMILE
Xem chi tiết
TPBank
Xem chi tiết
Kwalla
Xem chi tiết
hoangtuvi
Xem chi tiết
Chau
Xem chi tiết
Lê Phương Mai
Xem chi tiết
Kwalla
Xem chi tiết