1-x-2x^2
= 1-x-2x.2x
= 1 - ( x + 2x.2x)
= 1 - 5x
Để 1-x-2x^2 mang giá trị lớn nhất thì x phài là số âm.
\(A=1-x-2x^2\)
\(=-2\left(x^2+2\times x\times\frac{1}{4}+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2-\frac{1}{2}\right)\)
\(=-2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)
\(\left(x+\frac{1}{4}\right)^2\ge0\)
\(\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\ge-\frac{9}{16}\)
\(-2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\le\frac{9}{8}\)
Vậy Max A = \(\frac{9}{8}\) khi x = \(-\frac{1}{4}\)
\(A=-2x^2-x+1=-\left(2x^2+\sqrt{2}.2.\frac{1}{2\sqrt{2}}x+\frac{1}{8}\right)+\frac{9}{8}\)
\(A=-\left(\sqrt{2}x+\frac{1}{2\sqrt{2}}\right)^2+\frac{9}{8}\le\frac{9}{8}\)
\(MaxA=\frac{9}{8}\Leftrightarrow\left(\sqrt{2}x+\frac{1}{2\sqrt{2}}\right)^2=0\Leftrightarrow x=-\frac{1}{4}\)