ai làm được câu này mk cho ''MONEY''
Tìm GTLN:
\(f\left(x\right)=\sqrt{2x^2+9x+9}+2\sqrt{x+4}-2x\)
1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.
Cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm GTLN của biểu thức: \(M=xy+3y-4x^2-3\)
tìm x để các biểu thức sau có nghĩa:
a)\(\sqrt{\left(x-2\right)}\)+\(\dfrac{1}{x-5}\) b)\(\sqrt{\left(2x-6\right)\left(7-x\right)}\) c)\(\sqrt{4x^2-25}\)
d)\(\dfrac{2}{x^2-9}\)-\(\sqrt{5-2x}\) e)\(\dfrac{x}{x^2-4}\)+\(\sqrt{x-2}\)
Tìm GTNN của
\(A=\sqrt{4x^2+4x+1}+\sqrt{9x^2-12x+4}\)
\(B=\sqrt{a+3-4\sqrt{a-1}}+\sqrt{a+15-8\sqrt{a-1}}\)
\(C=2x+\sqrt{4-2x^2}\)
Tìm GTLN của
\(D=2x+\sqrt{4-x^2}\)
\(E=\frac{\sqrt{x-1}}{x}\)
\(F=\left(a+x\right)\sqrt{a^2-x^2}\left(0\le x\le a\right)\)
MÌNH CẦN GẤP LẮM GIÚP MÌNH VỚI
Cho \(a=\sqrt{2}+\sqrt{7-\sqrt[3]{61+46\sqrt{5}}}+1\) và đa thức \(f\left(x\right)=x^5+2x^{^4}-14x^3-28x^2+9x+19.\) Tính f(a)
bài 1
a,tìm đkxđ của x để biểu thức
A=\(\sqrt{2x}+2\sqrt{x+5}\) xác định
b,rút gọn biểu thức B=\(\left(\sqrt{3-1^2}\right)+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\)
bài 3 cho x ≥ 0,x≠1,x≠9 tìm x biết
\(\left(1-\dfrac{x+\sqrt{x}}{\sqrt{1+x}}\right).\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{2}{\sqrt{x-3}}\right)-2\)
1. \(2\left(2x^2+4x+3\right)=\left(5x+4\right)\sqrt{x^2+3}\)(làm liên hợp thì khó cm biểu thức dài dằng dặc kia vô nghiệm)
2. Tìm GTLN của \(A=\frac{21x+\sqrt{5x+1}+9}{7x+3}\)
1, Rút gọn biểu thức: \(A=\dfrac{-3}{4}.\sqrt{9-4\sqrt{5}}.\sqrt{\left(-8\right)^2.\left(2+\sqrt{5}\right)^2}\)
2, Với \(x=\sqrt{4+2\sqrt{3}}\). Tính giá trị biểu thức \(P=x^2-2x+2020\)