\(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\)
\(\Rightarrow A_{min}=1\Leftrightarrow\left(x-10\right)^2=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\)
#)Giải :
\(A=x^2-20x+101\)
\(A=x^2+2.10.x+10^2+1\)
\(A=\left(x+10\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = -10
=> Vậy GTNN của A = 1 đạt được khi x = -10
\(a,\)\(4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-2.x.2+2^2-7\right)\)
\(=-\left[\left(x-2\right)^2-7\right]\)
\(=-\left(x-2\right)^2+7\)
\(\Rightarrow A_{min}=7\Leftrightarrow\left(x-2\right)^2=0\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
\(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
\(\Rightarrow B_{max}=\frac{1}{4}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{2}\)