Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\forall x\right)\)
=> \(y=\frac{1}{x^2+x+1}\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\)
Dấu "=" xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x=-\frac{1}{2}\)
Vậy \(Min_y=\frac{4}{3}\Leftrightarrow x=-\frac{1}{2}\)