Tìm Gtnn của biểu thức:
A= \(\frac{\sqrt{x-2016}}{x+1}\) +\(\frac{\sqrt{x-2017}}{x-1}\)
Cho biểu thức A =\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
Tìm x để A đạt GTLN, tìm GTLN đó
cho biểu thức P=\(\frac{\sqrt{x}+1}{x-1}\)-\(\frac{x+2}{x\sqrt{x}-1}\)-\(\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
a,rút gọn P
b,tìm GTLN của biểu thức Q=\(\frac{2}{P}+\sqrt{x}\)
Cho biểu thức:
\(A=\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\)
a) Rút gọn A.
b) Tìm GTLN của biểu thức A.
cho biểu thức \(A=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right).\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
a) rút gọn biểu thức
b) tìm GTLN của A
Cho biểu thức P=(\(\frac{\sqrt{x}}{\sqrt{x}+x}:\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a/Rút gọn P
b/Tìm x để \(\frac{1}{P}=\sqrt{x}+2\)
c/Tìm GTLN của P
Cho biểu thức : B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
a) Tìm ĐKXĐ và rút gọn biểu thức B
b) So sánh B với 2
c) Tìm GTLN của A = B - \(9\sqrt{x}\)
1 Tìm GTNN của biểu thức
C=\(\frac{x+9}{10\sqrt{x}}\)
2 Tìm GTLN của biểu thức E= \(\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
3 Tìm x để \(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)
4 Rút họn P
P=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
CHO BIỂU THỨC:
\(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a) rút gọn A
b) CM: A>0 với mọi x \(\ne1\)
c) tìm x để A đạt GTLN, tìm GTLN đó