\(A=\left(1-x^{2n}\right)+\left(2-y^{2n}\right)\)
Có \(x^{2n}\ge0\);\(y^{2n}\ge0\)
\(\Rightarrow A\le\left(1-0\right)+\left(2-0\right)=3\)
Dấu "=" xảy ra khi x = 0 ; y = 0 với mọi n
Vậy Max A = 3 <=> x = 0 ; y = 0
\(A=\left(1-x^{2n}\right)+\left(2-y^{2n}\right)\)
Có \(x^{2n}\ge0\);\(y^{2n}\ge0\)
\(\Rightarrow A\le\left(1-0\right)+\left(2-0\right)=3\)
Dấu "=" xảy ra khi x = 0 ; y = 0 với mọi n
Vậy Max A = 3 <=> x = 0 ; y = 0
a,Tim GTNN cua bieu thuc \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b,Tim GTLN cua bieu thuc \(D=\frac{4}{\left(2x-3\right)^2+5}\)
Tim GTNN cua bieu thuc:
C=\(\frac{-2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\)
Chứng minh rằng:\(x^{\left(2^{y+1}\right)}+x^{\left(2^y\right)}+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)...\left(x^{\left(2^{y-1}\right)}+x^{\left(2^{y-2}\right)}+1\right)\left(x^{\left(2^y\right)}+x^{\left(2^{y-1}\right)}+1\right)\)với mọi \(x\in N;x>0\)và \(y\in N;y>1\)
Cho x,y,z khác 0 và x-y-z=0 . tinh gia tri cua bieu thuc \(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
bai 1 :
biet do thi ham so y=\(\left(\sqrt{a}-3\right)x\) di qua \(N\left(\sqrt{5};\sqrt{5}\right)\)( a la hang so)
vay a=?
Bai 2:
Cho \(Q\left(x\right)=ax^2+bx+c\)thoa man :
\(Q\left(0\right)=1;Q\left(1\right)=6;Q\left(2\right)=5\)Tinh b
bai 3 :tinh gia tri bieu thuc
\(A=3x+2y+z\)biet \(\left(x-3y^2\right)+\left(y-1\right)^2+\left(x+z\right)^2=0\)
voi gia tri nao cua bien thi bieu thuc sau co gia tri nho nhat,tim gia tri do
\(\left(x-2013\right)^2+\left(y-2014\right)^2-2015\)
Cho hàm số \(y=f\left(x\right)=1-\left|x\right|\)
a, Tính \(f\left(-5\right);f\left(\frac{-1}{2}\right);2\left(3\right)-\left(3f\left(1\right)-2f\left(3\right)\right):f\left(5\right)\)
b, Tính \(A=y_1+y_2+y_3+...+y_{2021}\)biết y1=1, y2=f(y1), yn+1=f(yn) với n là số nguyên dương
Tim gia tri nho nhat cua bieu thuc sau :
\(B=\left|x+3\right|+\left|2-x\right|\)
M.N giup em vs
1 Tìm số dư khi chia A ,B cho 2 biết
A=\(\left(4^n+6^n+8^n+10^n\right)-\left(3^n+5^n+7^n+9^n\right)\left(n\in N\right)\)
B=\(1995^n+1996^n+1997^n\left(n\in N\right)\)
2.Tìm chữ số tận cùng của \(9^{9^{2000}}\)
b.tìm 3 chứ số tận cùng của \(2008^{100}\)
3.tìm (x,y)thõa mãn:\(\left(\frac{2x-5}{9}\right)^{2016}+\left(\frac{3y+0,4}{3}\right)^{2012}=0\)
b,\(x\left(x+y\right)=\frac{1}{48}\) và \(y\left(x+y\right)=\frac{1}{24}\)