Ta có : E = 2x2 + y2 + 2xy - 8x + 2028
=> E = x2 + 2xy + y2 + (x2 - 8x + 16) + 2008
=> E = (x + y)2 + (x - 4)2 + 2008
Vì (x + y)2 + (x - 4)2 \(\ge0\forall x,y\in R\)
Nên : E = (x + y)2 + (x - 4)2 + 2008 \(\ge2008\forall x,y\in R\)
Vậy Emin = 2008 khi x - 4 = 0 => x = 4 ; x + y = 0 => 4 + y = 0 => y = -4
\(E=2x^2+y^2+2xy-8x+2028\)
\(E=x^2+2xy+y^2+x^2-8x+16+2012\)
\(E=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
Đẳng thức xảy ra \(\Leftrightarrow x+y=0\)và \(x-4=0\Leftrightarrow x=4;y=-4\)
Giá trị nhỏ nhất của E là : \(2012\Leftrightarrow x=4;y=-4\)
Vậy : Giá trị nhỏ nhất của E là : 2012