Bài 1: Cho a,b là các số dương thỏa mãn \(a^9+b^9=a^{10}+b^{10}=a^{11}+b^{11}.\)Tính giá trị của biểu thức \(P=a^{2018}+b^{2018}+2018\)
Bài 2:a, Tìm GTLN của biểu thức : \(A=5+2xy+14y-x^2-5y^2-2x\)
b, Tìm tất cả số nguyên dương n sao cho \(B=2^n+3^n+4^n\)là số chính phương.
Bài 3: Cho x,y là 2 số thực thỏa mãn :\(x^2+y^2-4x+3=0\). Tìm giá trị lớn nhất, nhỏ nhất của M=\(x^2+y^2\)
Bài 4; Cho \(A=3x^3-2x^2+ax-a-5\)và \(B=x-2\). Tìm a để \(A⋮B\)
Bài 5: Cho x,y,z là các số thực khác 0 thỏa mãn x+y+z=3 và \(x^2+y^2+z^2=9\). Tính giá trị của biểu thức \(P=\left(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}-4\right)^{2019}\)
giúp mình vs ạ...5* luôn ạ
bài 1: tìm cặp số (x,y) thỏa mãn đẳng thức:
x^2( x+3) + y^2(x+5) -(x+y)(x^2-xy+y^2) =0
bài 2: hai số x và y thỏa mãn các điều kiện x+y=-1 và xy=-12. tính giá trị của các biểu thức sau:
a)A=x^2+2xy+y^2 b) B=x^2+y^2 c)C=x^3+3x^2y+3xy^2+y^3 d) D=x^3+y^3
1. Cho 3 số a,b,c thỏa mãn a+b+c=11 và a2 +b2 +c2=87. Tìm giá trị của ab +bc+ca.
2.Cho a+b+c=0.Khi đó giá trị của biểu thức a3 +b3 +a2c +b2c- abc bằng bao nhiêu
3.Cho x+y=9 và x.y +4. Tính giá trị của x4+3x3y+3xy3 +y4.
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) cho x,y thỏa mãn 8x^2+y^2+1/4x^2=4
tìm x,y để xy đạt GTNN, GTLN.
b) tìm x,y nguyên 3xy+x+y=17
cho các sô thực x,y thỏa mãn điều kiện x+y=3; x^2+y^2=17. tính giá trị biểu thức x^3+y^3
Bài 1:
a, (x+1)^2-(x-1)^2-3(x+1)(x-1)
b, 5(x+2)(x-2)-1/2(6-8x)^2+17
Bài 2: Tìm x
a, 25x^2-9=0
b, (x+4)-(x+1)(x-1)=16
c, (2x-1)^2 +(x+3)^2-5(x+7)(x-7)=0
Bài 3: Tìm GTNN
A= x^2+5X=7
Bài 4 : Tìm GTLN
B= 6x -x^2-5
Bài 5:Cho x-y=-5. Tính giá trị của N=(x-y)^3-x^2+2xy-y^2
Bài 1: Cho a,b,c không đồng thời bằng nhau thỏa mãn: \(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}=3\)
Tính \(A=\frac{ab^2+1}{a^2+b^2-c^2}+\frac{bc^2+1}{b^2+c^2-a^2}+\frac{ca^2+1}{c^2+a^2-b^2}\)
Bài 2: Cho x,y là các số thực thỏa mãn: x + y # 0 và
\(\frac{x^2+y^2}{x+y}=\frac{5}{3};\) \(\frac{x^4+y^4}{x^3+y^3}=\frac{17}{9}\)
Tính \(U=\frac{x^6+y^6}{x^5+y^5}\)
Giá trị x và y thỏa mãn x^2 -2x +y^2 +4y +5 =0 là (x;y)
cho x, y thỏa mãn đẳng thức: 5x2 + 8xy + 5y2 + 4 - 4y + 8=0
tìm giá trị của biểu thức: P= (x + y)8 + (x + 1)11 + (y - 1)2018.