Gửi : Nguyễn Huy Thắng ( Quy nạp )
CMR : 1.2+2.3+3.4+...+n.(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Giải :
Đặt biểu thức trên là (*)
Với n = 1 Thì (*) \(\Leftrightarrow1.2=\frac{1.2.3}{3}\) ( Đúng )
Giả sử với (*) đúng với n=K
=> (*) <=> 1.2+2.3+...+k.(k+1)=\(.\frac{k.\left(k+1\right)\left(k+2\right)}{3}\)
Ta phải chứng minh (*) cùng đúng với 2=k+1
thật vậy với n=k+1
=>(*) <=> 1.2+2.3+...+k.(k+1)+(k+1).(k+2)=\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k.\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right).\left(k+2\right)=\frac{\left(k+1\right).\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k}{3}+1=\frac{k+3}{3}\Leftrightarrow\frac{k}{3}+1=\frac{k}{3}+1\)( Đúng )
=> (*) đúng với n = k+1
Vậy (*) đúng với mọi n thuộc N*
Sai hay đúng vậy :)
chứng minh \(\frac{1}{\sqrt{1.2}3}+\frac{1}{\sqrt{2.3}4}+....+\frac{1}{\sqrt{n\left(n+1\right)}\left(n+2\right)}\)<\(\frac{1}{\sqrt{2}}\)với mọi n là số tự nhiên
Giải Pt :
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{x\left(x+1\right)}=\frac{\sqrt{2012-x}+2012}{\sqrt{2012-x}+2013}\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
Kí hiệu [a] là phần nguyên của a
CMR: với mọi n nguyên dương ta luôn có
\(\left[\frac{3}{1.2}+\frac{7}{2.3}+...+\frac{n^2+n+1}{n\left(n+1\right)}\right]=n\)
Tìm số nguyên dương n lớn nhất để bất đẳng thức sau thỏa mãn
\(\frac{1}{\sqrt[n]{\left(na+b+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+nb+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+b+nc\right)^4}}\le\frac{3}{16}\)
trong đó a,b,c là các số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\)
CMR:
\(n< \frac{3}{1.2}+\frac{7}{2.3}+...+\frac{n^2+n+1}{n\left(n+1\right)}< n+1\) ( với n là số nguyên dương)
Chứng Minh Bất Đẳng Thức sau :
\(\frac{a^n}{b+c}+\frac{b^n}{a+c}+\frac{c^n}{a+b}\ge\frac{1}{3}\cdot\left(a^n+b^n+c^n\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right).\)
Chứng minh bất đẳng thức
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)>\frac{1}{2}\) \(\left(n\varepsilonℕ^∗,n\ge2\right)\)
Cho số k thỏa mãn \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}\right)\)Chứng minh \(k\in N\)