Gọi k là một giá trị của B ta có:
(3x² - 8x + 6)/(x² - 2x + 1) = k
<=> 3x² - 8x + 6 = k(x² - 2x + 1)
<=> (3 - k)x² - (8 - 2k)x + 6 - k = 0 (*)
Ta cần tìm k để PT (*) có nghiệm
Xét: ∆ = (8 - 2k)² - 4(3 - k)(6 - k) = 64 - 32k + 4k² - 4(18 - 9k + k²) = 4k - 8
Để PT (*) có nghiệm thì ∆ ≥ 0 <=> 4k - 8 ≥ 0 <=> k ≥ 2
Dấu "=" xảy ra khi -(8 - 2.2)x + 6 - 2 = 0 <=> -4x + 4 = 0 => x = 1
Vậy B ≥ 2 => GTNN của B = 2 khi x = 1
Ta có \(\frac{3x^2-8x+6}{x^2-2x+1}\) = \(\frac{2\left(x^2-2x+1\right)+x^2-4x+4}{x^2-2x+1}\) = 2+\(\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\) >= 2
Dấu "=" xảy ra khi x-2=0 => x=2
Vậy Min = 2 Khi x=2
Gọi k là một giá trị của B ta có:
(3x² - 8x + 6)/(x² - 2x + 1) = k
<=> 3x² - 8x + 6 = k(x² - 2x + 1)
<=> (3 - k)x² - (8 - 2k)x + 6 - k = 0 (*)
Ta cần tìm k để PT (*) có nghiệm
Xét: ∆ = (8 - 2k)² - 4(3 - k)(6 - k) = 64 - 32k + 4k² - 4(18 - 9k + k²) = 4k - 8
Để PT (*) có nghiệm thì ∆ ≥ 0 <=> 4k - 8 ≥ 0 <=> k ≥ 2
Dấu "=" xảy ra khi -(8 - 2.2)x + 6 - 2 = 0 <=> -4x + 4 = 0 => x = 1
Vậy B ≥ 2 => GTNN của B = 2 khi x = 1
Gọi k là 1 giá trị của B ta có :
\(\frac{\left(3x^2-8x+6\right)}{x^2-2x+1}=k\)
\(\Leftrightarrow3x^2-8x+6=k\left(x-2x +1\right)\)
\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\left(\cdot\right)\)
Đến đây bạn tự làm nha~