Ta có: \(y-\frac{29}{3}=2x^2+\frac{5}{x+1}-\frac{29}{3}\)
\(=\frac{6x^2\left(x+1\right)+15-29\left(x+1\right)}{3\left(x+1\right)}\)
\(=\frac{6x^3+6x^2+15-29x-29}{3\left(x+1\right)}\)
\(=\frac{6x^3+6x^2-29x-14}{3\left(x+1\right)}\)
\(=\frac{\left(6x^3-12x^2\right)+\left(18x^2-36x\right)+\left(7x-14\right)}{3\left(x+1\right)}\)
\(=\frac{\left(x-2\right)\left(6x^2+18x+7\right)}{3\left(x+1\right)}\ge0\left(\forall x\right)\) vì \(x+1\ge3>0\)
\(\Rightarrow y\ge\frac{29}{3}\)
Dấu "=" xảy ra khi: \(x=2\)
Vậy \(min_y=\frac{29}{3}\Leftrightarrow x=2\)